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Improved Approximations for the Fringing
and Shielded Slab-Line Capacitances

HENRY J. RIBLET, FELLOW, IEEE

Abstract — Given the dimensions w/( b – t) and t/b for the slab-line

geometry or the dimensions s/b and t/b for the fringing capacitance

geometry, it is shown how the capacitances associated with each geometry

can be determined accurately from new explicit expressions rather than by

a computerized search. The two expansions for the nome q’, in terms of

the dimensions, which are essentiaf for the calcrdations, are identical

except for signs. Finally, comparisons are made with values of the capaci-

tances obtained by a computerized search.

I. INTRODUCTION

A LIl”I’LE OVER fifty years ago, Carter [1], Cockcroft

[2], and Lundkvist [3] published papers discussing

magnetic, electric, and thermal problems, respectively,

which were analyzed by mapping the upper half-plane into

a suitable infinite polygon by means of the elliptic integral

of the third kind having a complex parameter. In his book

on elliptic functions, Bowman [4] treats the mapping prop-

erties of the elliptic integral of the third kind when the

parameter is real as well as imaginary. Shortly thereafter,

Bates [5] used the elliptic integral of the third kind with a

real parameter to determine the capacitance of the coaxial

transmission line referred to as “slab line,” shown in Fig.

l(a). Getsinger [6] extended the work of Cockroft by

calculating the excess of the capacitance of the coaxial

structure of Fig. l(b) over that due to the infinite parallel

plates for both the even- and odd-mode cases. These excess

capacitances are now known as “fringing capacitances.”

Binns and Lawrenson [7] in their recent book apply the

mapping provided by an elliptic, integral of the third kind

with complex parameter to the problem of finding the

magnetic field in the finite slot of an electrical machine.

Recently, Riblet [8] has used both types of elliptic integrals

of the third kind in an improved approximation for the

characteristic impedance of rectangular coaxial line.

The elliptic integral of the third kind maps the upper

half t plane of Fig. 2 into the infinite five-sided polygons

of the s. and SC planes: into the s, plane when the

parameter is real and into the SCplane when it is complex.

Consequently, the dimensions of the figures are given

parametrically in terms of the modulus and parameter of

the elliptic integral. In any practical application, however,

it is the dimensions which are given; therefore, it is neces-

sary to find the modulus and parameter from the given
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Fig. 1. Geometries for real and complex parameter.
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Fig. 2. t, s,, and SCplanes.

dimensions before proceeding. The authors referred to

above have all recognized this problem and determined the

independent variables from the given dimensions by inter-

polation with the help of tables and graphs. Now, of

course, it is possible to carry out this inversion by a

trial-and-error search for these variables with the help of a

digital computer. This is not a simple matter, since the two

programs require a detailed knowledge of the theory of

elliptic functions and must be written with care in order to

achieve sufficient accuracy.

In two short papers, Riblet [9], [10] has obtained expan-

sions for the nome q‘ directly in terms of the dimensions

of the polygons, from which the modulus and parameter of

the elliptic integrals can be found immediately. The al-
gorithms used in these papers differ somewhat and the

expansions are seemingly unrelated. In this paper, the two

expansions for the nome q’, which are now shown to be

identical except for signs, are given to 11 terms. These
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expansions can then be used to calculate the fringing and

slab-line capacitances with great accuracy for most cases

of practical interest.

II. THE PROBLEM

The Jacobian elliptic integral of the third kind, 11( u, a),

may be expressed in the form

cnadna

/

u sn2 u du
II(u, a)= (1)

sn a o v–sn2u

if v = 1/( k 2 sn2 a ). Moreover, if t = sn2 u, it is readily

found that

211(u, a) cnadna ~

J

G dt
$= —

T ~sna o(~–t) (l–t)(l–kzt) “

(2)

The complex value of s at the points A, B, and C shown

in Fig. 2 is given by

J(A) =211( K,a)/7r

.s(B)=211(K +jK’, a)/7r

s(C) =211( jK’, a)/7r. (3)

Let us denote u by a, and v by v, for the real case.1 Then,

if O < v, < K,, v, < l/k~ and the upper half of the t plane

of Fig. 2 is mapped into the infinite polygon in the SC

plane just below it. For the complex case, if a is replaced

by aC + jK:, v is denoted by v,, and O < aC < KC, it is

found that O < VC<1. Now (2) maps the upper half of the t

plane into the infinite polygon shown below it in the SC

plane.

Consideration of Fig. 2 indicates that the x‘s and y‘s of

both cases satisfy the equations

x = Re{211(K, a)/fi}

y=l– j211(jK’, a)/m. (4)

Then, with the help of [4, p. 82]

X.= ~KrZ(ar)
v

(5)

and

( cna=dnaC
XC= :KC Z(aC)+

snac )

2

{

cna Cdna C
yC= ~K: Z(aC)+

)
+? (6)

ac c

from [11, p. 294, eq. 9]. It is noticed at once, if the elliptic

functions are eliminated from (5) and (6), that both pairs

of variables satisfy the equation

a= Ky— K’x. (7)

Since K and K‘ are functions of the modulus k, this

equation expresses the parameter a explicitly in terms of

the known dimensions x and y and the modulus. It is

useful to write this equation in the form

where q’ is the

theory and p is

qf = pvYe - ~x/Y (8)

complementary nome of elliptic function

defined by

p=~ – ru/K’ (9)

The second equation of (4) provides the additional condi-

tion which will permit a determination of k and a ex-

plicitly in terms of x and y. For this purpose, the identity

II(jK’, a)= K’Z(j[K+jK’-a], k’) (lo)
which can be derived from [11, p 423, eq. 1], is useful.

Then, for the real case, if a is replaced by a, in (4)

2K~
j —Z(j[Kr+ jK~–a,], k~)=l–yr (11)

‘R

while for the complex case, when a is replaced by a=+ jK~

2K:
j —Z(j[KC– aC], k:)=l–yC. (12)

T

The equation obtained for real a is not identical to that

obtained for complex a; but, as will be shown, this dif-

ference requires only a sign change in the series that

expresses a, as a function of k, and the dimensions x, and

Y,.
Stated in a general way, (11) is solved for a, in terms of

k, in series form. This series is then substituted in (8) to

eliminate a, and give k, in terms of x, and y,. It is then

possible to find a, by substituting this value of k, into (7).

It is then shown that, except for signs, the same solutions

would be obtained from (12) for kC and aC.

In the discussion to follow, it will simplify the notation

if the subscript r is ignored when a is real.

From [11, p. 295, eq. 2]

2K’
j —Z(j[K+jK’–a], k’)

T

sinhn –2q’3 sinh2n +3q’8 sinh3n + . . .
= –4q’

l–2q’coshn +2q’4cosh2n – . . .
(13)

where n = T(K + jK’– a)/K’. If p = exp(– mY/K’), it

is found from (11) and (13) that

2p –2q’2p-l +4q’2p*–4q’6p-2 + . . . +2i(q’’2-’p’ – q“’+’p-’)+ . . .
=1–y,

l+p+q’*p-l +q’2p2+q’6p-2+ . . . +(q’’’-’p’ + q“’+’p-’)+ . . .
(14)

1Here, the subscripts r and c are used to distinguish the real case from
the complex case. Then, neglecting all terms in q’ of i2 -t i degree or higher,
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the following equation of degree 2i – 1 in p is obtained:

(y+2i-l)q’’2->’+ . . . +(y+5)q’6p3 +(y+3)q’*p2

+(y+l)p +(y–l)+ (y–3)q’*p-l +(y–5)q’6p-*

+ . . . +(y–2i+l)q’i2-’p -i+l=0, (15)

If all terms in q’ of 30th degree or higher are neglected,

(15) reduces to

(y +9)q’*”p’ +(y+7)q’’*p’+(y +5)q’6p3 +(y +3)q’*p*

+(y+l)p +(y–l)+(y– 3)q’2p-l+(y –5)q’6p-*

+(y–7)q’1*p-3 +(y-9)q’*’3p-4=o. (16)

It has been found that this equation can be satisfied

identically for all terms as high as q’20 by the proper

selection of the coefficients in the expansion

p = ao+ alq’z+ . . . + aloq’20. (17)

For example, if terms containing the factor q’2 are ignored,

(16) reduces to

(y+l)p+y-l=o (18)

so that

l–y
ao=—

l+y”
(19)

Then, if terms involving q’c are ignored, (16) reduces to

(y+3)q’*p’+(y+l) p’+(y-l)p+(y-3) q’*=o.

(20)

Substitution of (17) in (20) yields, when the coefficients of

q’2 and q“ are equated to zero, respectively,

3–y–(3+y)a;
al = (21)

ao(l+ y)

and

3(y+3)a~al+(y+l)af
~2= (22)

ao(l+ y) “

In fact, each higher power in q’2 yields an additional

equation in which the new unknown occurs to the first

power with a nonzero coefficient. Thus, each of the un-

knowns in (17) can be expressed as a rational function of

the unknowns determined previously and, hence, as a

rational function of y. When the first three terms of (17)

are found in this way by algebraic substitution

l–y

{

16y 16y
——

P–l+y 1+ (1_y2)* q’+ (&y2)’

}
.(3y4-18y2 +8y-9)q’4+ . . . . (23)

The only difference in the discussion when a is complex

arises from the jK’, which occurs in (11) but is not present

in (12). This means that pC = exp ( – wa ~/K:), except for a

change in sign, will satisfy an equation identical to (14)

with y replaced by yC. Moreover, it is clear from Fig. 2

that y <1< y=. Then, since the leading coefficient in both

p and PC is positive, they can be expressed in the form

l–y

– {

16y 16y

‘= l+y 1+ (1_y2)* @2+ (py2)4

}
.(3y4-18y2+8y -9)q’4+ . . . . (24)

The further results of this paper depend only on (8) and

(24) and so are valid for a real or complex parameter a.

The terms on the right-hand side of (24) depend only on k

and y so that the substitution of p into (8), eliminates a

and gives an expression for k entirely in terms of x and y.

The coefficients in

P l’J’=bo +blq’*+. ”.+ biq’*i+ . . . (25)

follow directly from those of (24) with the help of the

binomial theorem. By algebraic substitution, it is found

that

~,y _ l–y l’Y

(

16
P

_ —
l+y 1+ (l-y Z)’q’*

+ ~l!~z~’
}

(3y4-18y2-l)q’4+ . . . . (26)

Then, if an expansion of the form

q’= coe –~x/JJ + ~1~– 3?rx/y +
s 00 + cie-2iWx/J’+ . . . (27)

is assumed and (25) and (27) are substituted into (8), the

values of co, ” “ ., Ci can be determined. In fact, co = bo, c1

= blc~, C2= 2blcocl + b2c~ and, in general, each coefficient

in (27) can be expressed as a multinominal in the previously

determined coefficients of (25) and (27). When the re-

quired substitutions are carried through

(
l/y ~

ql=ll_ Y7 Q’ e–T7x/y

l+y 11- yzl

l–y 3’Y 16
+— e–37?x/y

l+y 11-y*l’

l–y “y 16(3y4 –18y2 +31)
+ —

)

–577x/Y+ . . . .

l+y ]1- y*15 e
(28)

.

Performing the algebraic steps of this procedure, even to

find the coefficient of exp ( – 5Tx/y) in (28), is tedious.

The regular appearance of the coefficients suggests, how-

ever, that their polynomial factors can be determined from

their values at a number of points on the real axis. When

this was implemented on a digital computer, it was found

that
10

q’=11–y21 ~ C(i) T2’+1 (29)
i-o

where

l–y l/Y e–7rx/y

T= — —
l+y 11- y*l
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and

c(o) =1

C(l) =16

C(2) =16(3y4 –18y2 +31)

C(3) = 64(3y8 –72y6 +450y4 –1064y2 +875)/3

C(4) = 16(7y12 – 270y1° + 3693y8 – 22196yG + 64689y4

– 90078y2 +48251)

C(5) = 32(45y16 – 4320y14 + 104460Y12 – 1150560y1°

+ 6733950y8 – 22178400yG + 41111724y4

–39954400y2+15829021)/15

C(6) = 64(1485y20 – 133650y18+4888125ylG

–85539960y14+826058970y12

–4762247820y1°+ 17009930850y8

–37841542200yG+ 50880292793y4

–37758531250y2+ 11856583937)/495

C(7) =128(7y24– 1512y22+81774y20 –2081128y18

+29835057y16– 263259920y14 +1502298980y12

–5687848656y1°+ 14378327929y8– 23929259528y6

+25111900366y4– 15033150664y2+3907837359)/7

C(8) =16(4725y28 –878850y2G+61521075y24

–2136973860y22+ 42549625125y20

–530922866670y18

+4388387507595y16 –24858706628280y14

+98340298079079y12 –273370988493246y1°

+530402371431681y8 –701721204772836y6

+602202601548415y4 –301697220375698y2

+66889468440385)/315

C(9) =16(36855y32 –10886400y30+ 1044618120y28

–47830608000y26

+1261417665060y24 –21103362241920y 22

+237498114019320y20

–1867896202394880y18 +10522731466801386y16

–43079389762268160y14 +128901200546148408y12

–281029242225518208y10 +440413731938457828y8

–482195108654477696y6 +349472852081130696y4

–150411589033214976y 2

+29067276705016727)/2835

C(10)=32(675y 3G–214650y34 +24524775y 32

–1416164400y30

+47753927100y28 –1030782763800y 26

+15126283744860y24 –157157532680400y22

+l188621307767210y 20–6667418727685020y18

+28058027730058290y16

–89039060380434000y14

+212835395264864940y12

–380072612372777880y1°

+498218768602080812y8

–464481620112148400yG

+291058626317465931y4

–109747648387208250y2

+18794513408019807)/75 .

Tedious algebra was involved in finding the first seven

coefficients in (29). Explicit formulas expressing the first

seven of the coefficientsin (17), (25), and (27)in terms of

coefficients already known were derived. In fact, the coef-

ficientsin (24), (26), and (28) were obtained by detailed

substitution in the simpler of these formulas. To find the

next four coefficients, these formulas were programmed on

a digital computer and the values of each unknown coeffi-

cient were found successively at different values of y on

the real axis. The polynomial factor of each of the un-

known coefficients was then reconstructed from these val-

ues.

A method which avoided the tedious algebra involved in

expressing explicitly the unknown coefficient in terms of

known coefficients was adopted to find the last four

coefficients in (29). It can be shown that (16) permits the

determination of the value of the coefficients of q’2i in

terms of the values of the coefficients of lower degree

occurring in the powers of p, up to the ninth, so long as
2i<30. Since these vduesdepend onlyon the values of

the coefficients ofdegree <2i, it follows by induction that

the value of the coefficient of q’2i can be found directly

from (16) for any value of y if 2i <30.

The convergence of the expansion for q’ has not been

demonstrated. It is possible, however, that it converges
over a wide range of values of the dimensions for both

geometries. In spite of the large values of the coefficients
in the highest degree terms, there is sufficient cancellation

in themso that when they are multiplied by(l–y) to the

proper power for y<l and divided by (l+y) to the

proper power for y>l, the final values are small, uni-

formly decreasing quantities for y <1 and small, generally

decreasing quantities of changing sign fory>l.

In any case, the values of k and a obtained from (29)

are extremely accurate. For x/y as small as 0.05, the

values of k and a obtained from (29) are accurate within

0.01% for values of y corresponding to values of t/b

ranging from 0.05 to 0.9. For values of x/y= O.2, agree-
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ment to tendecimal places is found. As x/y increases, the

number of terms of (29) required for a given accuracy

decreases, as one might expect. For example, when x/y=

0.8, four ‘terms of (29) give ten-place accuracy; when

x/y=l.6, only three terms are sufficient for nine-place

accuracy.

Equation (29) determines the value of q’ directly in

terms of the values of the dimensions x and, y of Fig. 2.

For the geometry of Fig. 2(a), y <1 and for the geometry

of Fig. 2(b), y >1. In either case, k is given by the

well-known expression

l–2q’+2q’4–2q’9+ ‘..
&=

l+2q’+2q’4+2q’9+ . . . “
(30)

When a is real, the geometry is that of a slab line. Then

x=xr= w/b

y=yr=l–t/b. (31)

For given dimensions, the modulus k, is first determined

from (31), (29), and (30). It is then possible to find a = a,

from (7) since K, and K; are now known. The capacitance

C, of the structure is then given by the expression

c.= 4K;/K~ . (32)

Here, KO and K~ are the complete elliptic integrals of the

first kind of modulus kO, where

cn(cq, kr
k~ = )

dn(a,, k,) “
(33)

When a is complex, the geometry is that associated with

the approximate fringing capacitance CA. Then

~=xC=~/(b–t)

y=yc=b/(b–t). (34)

As above, kC and aC are found from (34), (29), (30), and

(7).

Explicit formulas for the C.. have been given by

Cockcroft [2], Getsinger [3], and Riblet [12]. In the expan-

sion for C;, given in [12, eq. (4)] a must be replaced by

K – aC. Moreover, after this substitution, the 2(a) can be

eliminated by introducing the value of x from (6). Finally

as

CA= K(b–t)
–210g(ksnacnaf3~ (a))/r. (35)

.

Here, d~(cr) = f3(a)/6(0) and the subscript c has been

omitted.

Table I compares the values of C, and CL obtained

from (32) and (35) using (29) with values obtained from an

accurate computerized search. The values in the top row

are the accurate values, while the next row gives the values
obtained by using all 11 of the terms of (29). The third row

uses only seven of the terms of the series. The values in the

table show that the use of all 11 terms of the expansion

substantially increases the accuracy with which C, and C;,

are approximated for small values of s/b and w /(b – t).

For values of s/b and w/(b – t) >0.2, the number of

terms required for ten-place agreement decreases rapidly,

TABLE I
VALUES OF C}O AND C.

1

I CL cS/q I
s/b w/( b-t)

I/b 05 10 20 05 10 20

2 680566230 1 789! 73248 t ,9,7,6807 5072? 94390 5792213317 7002360012

05 268104 178917345 1 191716807 50723024 5792213317 7002360012
2 7oe I 78937 1191716853 507272 57922207 7002360015

3649045900 2261324192 1 42230’3070 5788907107 6465702057 7638956236

In 3649090 2261324203 1 422309070 57889129 6465702061 7638956236

3682 226151 1 4223091 13 378926 64637081 7638956238

1 1 3178? 862 5970222677 3203973057 I 071929709 1 131164070 t 240413846
50 II 317839 5970222680 3203973057 1 07192998 I 131164070 1 240413846

113197 59702275 3203973057 I 071948 I 13116437 I 240413846

18 64353725 9558728800 3 143537249 2 128467967 2 186305706 2 294! 19392

90 18 64361! 9 5587?8828 5 1’13537250 2 12846820 2 186305706 2 29419332

18 6475 9558760 5 143537260 2 !28484 2 18630596 2 294119392
1

as has been observed. It is clear that, for most geometries

of practical interest, (29) will determine both the slab-line

capacitance C. and the approximate fringing capacitance

CA with great accuracy, enabling the previous com-

puterized search methods to be avoided.

III. EVALUATION OF THE ELLIPTIC FUNCTIONS

The determination of C, and CA from the values of k

and a found by a computerized search requires routines

for calculating values of various elliptic functions. The

same is true of the values of C, and CA obtained from the

k and a found from (29), (30), and (7). Thus, an error

somewhere in these routines could result in an error in the

first row for each t/b parameter given in Table I without

affecting the agreement between the accurate first-row

values and the approximate second- and third-row values.

In order to minimize this possibility, two routines for

evaluating the elliptic functions were employed. The values
of the elliptic functions used in evaluating C. and C~Oin

terms of the k and a found by a computerized search were

determined by means of the q series for the theta func-

tions, while Landen’s transformation was used to find the
approximate values of C, and Cf,.
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