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Improved Approximations for the Fringing
and Shielded Slab-Line Capacitances

HENRY J. RIBLET, FELLOW, IEEE

Abstract —Given the dimensions w/(b —t) and t/b for the slab-line
geometry or the dimensions s/b and t/b for the fringing capacitance
geometry, it is shown how the capacitances associated with each geometry
can be determined accurately from new explicit expressions rather than by
a computerized search. The two expansions for the nome ¢’, in terms of
the dimensions, which are essential for the calculations, are identical
except for signs. Finally, comparisons are made with values of the capaci-
" tances obtained by a computerized search.

I. INTRODUCTION

LITTLE OVER fifty years ago, Carter [1], Cockcroft

[2}, and Lundkvist [3] published papers discussing
magnetic, electric, and thermal problems, respectively,
which were analyzed by mapping the upper half-plane into
a suitable infinite polygon by means of the elliptic integral
of the third kind having a complex parameter. In his book
on elliptic functions, Bowman {4] treats the mapping prop-
erties of the elliptic integral of the third kind when the
parameter is real as well as imaginary. Shortly thereafter,
Bates [5] used the elliptic integral of the third kind with a
real parameter to determine the capacitance of the coaxial
transmission line referred to as “slab line,” shown in Fig.
1(a). Getsinger [6] extended the work of Cockroft by
calculating the excess of the capacitance of the coaxial
structure of Fig. 1(b) over that due to the infinite parallel
plates for both the even- and odd-mode cases. These excess
capacitances are now known as “fringing capacitances.”
Binns and Lawrenson [7] in their recent book apply the
mapping provided by an elliptic integral of the third kind
with complex parameter to the problem of finding the
magnetic field in the finite slot of an electrical machine.
Recently, Riblet [8] has used both types of elliptic integrals
of the third kind in an improved approximation for the
characteristic impedance of rectangular coaxial line.

The elliptic integral of the third kind maps the upper
half ¢ plane of Fig. 2 into the infinite five-sided polygons
of the s, and s, planes: into the s, plane when the
parameter is real and into the s, plane when it is complex.
Consequently, the dimensions of the figures are given
parametrically in terms of the modulus and parameter of
the elliptic integral. In any practical application, however,
it is the dimensions which are given; therefore, it is neces-
sary to find the modulus and parameter from the given
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Fig. 1. Geometries for real and complex parameter.
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Fig. 2. 1, s,,and s, planes.

dimensions before proceeding. The authors referred to
above have all recognized this problem and determined the
independent variables from the given dimensions by inter-
polation with the help of tables and graphs. Now, of
course, it is possible to carry out this inversion by a
trial-and-error search for these variables with the help of a
digital computer. This is not a simple matter, since the two
programs require a detailed knowledge of the theory of
elliptic functions and must be written with care in order to
achieve sufficient accuracy.

In two short papers, Riblet [9], [10] has obtained expan-
sions for the nome ¢’ directly in terms of the dimensions
of the polygons, from which the modulus and parameter of
the elliptic integrals can be found immediately. The al-
gorithms used in these papers differ somewhat and the
expansions are seemingly unrelated. In this paper, the two
expansions for the nome ¢’, which are now shown to be
identical except for signs, are given to 11 terms. These
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expansions can then be used to calculate the fringing and
slab-line capacitances with great accuracy for most cases
of practical interest.

II. TuE PROBLEM

The Jacobian elliptic integral of the third kind, II(u, a),
may be expressed in the form

IM(u,a)= (1)

if »=1/(k?sn’*a). Moreover, if t=sn’u, it is readily
found that

v—sn’u

cnadna /u sn? udu
sna Yo

Vi dt

(r—1)(1-1)(Q1-k%)
(2)

The complex value of s at the points 4, B, and C shown
in Fig. 2 is given by

s(A)=21(K,a)/n

s(B)=2II(K + jK',a)/m

s(C) =210(jK’,a)/m. (3)
Let us denote a by a, and » by », for the real case.! Then,
if 0<»y,<K,,v,<1/k? and the upper half of the  plane
of Fig. 2 is mapped into the infinite polygon in the s,
plane just below it. For the complex case, if a is replaced
by a,+ jK/, v is denoted by v, and 0 <a,<K_, it is
found that 0 < », <1. Now (2) maps the upper half of the ¢
plane into the infinite polygon shown below it in the s,
plane. .

Consideration of Fig. 2 indicates that the x’s and y’s of

both cases satisfy the equations

x=Re{2II(K,a)/=n}
y=1— j2II(jK’,a)/=.
Then, with the help of [4, p. 82]

2I1(u,a) cnadna
-2t et
0

k) 7Tsna

(4)

2
x,=—K,Z(a,)
v

2 a,
=~K/Z(a,)+ —
Yr a " (ar) K

r

(5)

and
2 cna dna,
xc=—Kc Z(ac)+_
T sno,
2 cne dne, a,
Ye=—K{ Z(a)+ ——— 1+~ (6)
7 < KC

2p_2q/2p—1+4q/2p2_4q/6p72+ .
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from [11, p. 294, eq. 9]. It is noticed at once, if the elliptic
functions are eliminated from (5) and (6), that both pairs
of variables satisfy the equation

a=Ky— K'x. (7)
Since K and K’ are functions of the modulus %, this
equation expresses the parameter a explicitly in terms of
the known dimensions x and y and the modulus. It is
useful to write this equation in the form

q’ = pl/ye_'”x/y

(8)
where g’ is the complementary nome of elliptic function
theory and p is defined by

—aa/K’

©)

The second equation of (4) provides the additional condi-
tion which will permit a determination of k¥ and a ex-
plicitly in terms of x and y. For this purpose, the identity

II(jK' a)=K'Z(j[K+ jK'—al,k’)  (10)

which can be derived from [11, p 423, eq. 1], is useful.
Then, for the real case, if a is replaced by «, in (4)

p=e

4
r

Z(jIK,+ jK!~a,) k) =1-y,  (11)

while for the complex case, when a is replaced by a, + jK/

(12)

The equation obtained for real a is not identical to that
obtained for complex a; but, as will be shown, this dif-
ference requires only a sign change in the series that
expresses a, as a function of k, and the dimensions x, and
Yy

Stated in a general way, (11) is solved for «, in terms of
k, in series form. This series is then substituted in (8) to
eliminate «, and give &, in terms of x, and y,. It is then
possible to find «, by substituting this value of k, into (7).
It is then shown that, except for signs, the same solutions
would be obtained from (12) for k£, and «a.

In the discussion to follow, it will simplify the notation
if the subscript r is ignored when « is real.

From [11, p. 295, eq. 2]

2K’

T

2
J
T

’

KC .
Z(jIK .~ e, ki) =1- ..

T

J

J Z(jIK + jK'—a], k")
,sinhn ~24q”sinh2n +3¢'¥sinh3n + - - -
1-2q’coshn+2q"*cosh2n— - --

(13)

where n=m(K + jK’'—a)/K’. If p=exp(—ma/K"), it
is found from (11) and (13) that

+2i(q"p =g T

1+p+q/2p~l+q/2p2+q/6p—-2+ ...

IHere, the subscripts » and ¢ are used to distinguish the real case from
the complex case.

(14)

—1- .
+{g" T g )+ g

Then, neglecting all terms in ¢’ of i*> + i degree or higher,
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the following equation of degree 2i —1 in p is obtained:

(y+2i=1)g" "'+ - +(y +5)¢"p* +(» +3)¢”p?
+H(y+D)p+(y-D+(»-3)g?p +(y-5)g"p~?
-4 (y—2i+1)gpitl=0, (15)
If all terms in g’ of 30th degree or higher are neglected,
(15) reduces to

(¥ +9)g" > +(y+7)g"p* +(y +5)q"°p® + (y +3) ¢’ *p?
+(y+D)p+(y-1)+(y—-3)g?p ' +(y—5)qp2
+(y=7g"p > +(y—9) g p~*=0. (16)

It has been found that this equation can be satisfied
identically for all terms as high as ¢’ by the proper
selection of the coefficients in the expansion
720

(17)
For example, if terms containing the factor ¢’> are ignored,
(16) reduces to

P=ao+alq'2+ s tag

(y+)p+y-1=0 (18)
so that
1-y
=—, 19
ag 1+y ( )

Then, if terms involving ¢’° are ignored, (16) reduces to

(y+3)g”p*+(y+)p*+(y -1 p+(y-3)g”?=0.
(20)

Substitution of (17) in (20) yields, when the coefficients of
q’* and q’* are equated to zero, respectively,

3-y—(3+y)a3

“T ap(1+y) @)
and
. =3(y+3)a§a1+(y+1)a12 )
2 ao(1+ y) '

In fact, each higher power in ¢’? yields an additional
equation in which the new unknown occurs to the first
power with a nonzero coefficient. Thus, each of the un-
knowns in (17) can be expressed as a rational function of
the unknowns determined previously and, hence, as a
rational function of y. When the first three terms of (17)
are found in this way by algebraic substitution

1—y{1+ 16y . 16y
S TR S R

-(3y*—18y%+8y —9)g"* + - --

(23)

The only difference in the discussion when a is complex
arises from the jK’, which occurs in (11) but is not present
in (12). This means that p,=exp(— wa,/K/), except for a
change in sign, will satisfy an equation identical to (14)
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with y replaced by y,. Moreover, it is clear from Fig. 2
that y <1< y_. Then, since the leading coefficient in both
p and p_ is positive, they can be expressed in the form

I-y

1+y

p=

16
1+ _
{ (1-»?) (1-»?)

-(3y4—18y2+8y—9)q'4+---}. (24)

The further results of this paper depend only on (8) and

(24) and so are valid for a real or complex parameter q.

The terms on the right-hand side of (24) depend only on &

and y so that the substitution of p into (8), eliminates a

and gives an expression for k entirely in terms of x and y.
The coefficients in

P =bytbyg e bg P (29)

follow directly from those of (24) with the help of the
binomial theorem. By algebraic substitution, it is found
that

_ Yy
pl/Y= .1__y {1+ _ﬁ._iqd
I+y (1-»%)
16 4 2 4
+m(3y ~18y2—1)g"+ -+ }. (26)

Then, if an expansion of the form

q/= coe_'”x/y + cle—37’x/y+ v e cie—zm'x/y_l- [N

(27)
is assumed and (25) and (27) are substituted into (8), the
values of ¢g,- -+, ¢; can be determined. In fact, ¢, = by, ¢;
= b,cd, c, = 2b,c,c, + bych and, in general, each coefficient
in (27) can be expressed as a multinomial in the previously
determined coefficients of (25) and (27). When the re-
quired substitutions are carried through

’ 1 2 l_yl/y
q'=[1-y7 1+
1__y3/y

1+y

1
-7

—-ax/y

16
-3¢

716(3y* =18y +31) 28)
- y?? '

Performing the algebraic steps of this procedure, even to
find the coefficient of exp(—57x/y) in (28), is tedious.
The regular appearance of the coefficients suggests, how-
ever, that their polynomial factors can be determined from
their values at a number of points on the real axis. When
this was implemented on a digital computer, it was found
that

~3ux/y

1-y
1+y

+ e STV 4 ..

10
g'=[1-y* ¥ ciyr>*

(29)
i=0
where
1-y 1/y e~ Tx/Y
1+y| -7
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and
c(0) =1
c(1) =16
C(2) =16(3y* —18y2 +31)
C(3) = 64(3y® — 72y +450y* —1064y* +875) /3
C(4) =16(7y'2 — 270y + 3693 y® — 22196 y© + 64689 y*
—90078y2 +48251)
C(5) = 32(45y' — 4320y + 104460 y'? — 1150560 '
+6733950y® — 221784006 + 41111724 y*
— 399544002 +15829021) /15
C(6) = 64(1485y2° — 133650 '8 + 488812516
— 85539960 + 826058970 '
— 4762247820 y'° + 17009930850
— 37841542200y + 50880292793 *
— 377585312502 +11856583937) /495
C(7) =128(7y* — 1512y + 81774y ° — 2081128 y'8
+29835057y'¢ — 263259920 y'* + 1502298980 y'2
— 5687848656 y1° +14378327929y® — 23929259528 ¢
+25111900366y* — 15033150664 2 + 3907837359) /7
C(8) =16(4725y%8 — 878850y + 61521075y
— 2136973860y + 42549625125y %°
— 530922866670 y'8
+ 4388387507595 ¢ — 24858706628280 y*
+98340298079079y'2 — 273370988493246 10
+530402371431681y® —701721204772836 ¢
+602202601548415y* —301697220375698 2
+66889468440385) /315
C(9) =16(36855y32 — 10886400y + 1044618120 y 28
— 47830608000 y2¢
+ 1261417665060 y>* — 21103362241920 y 22
+237498114019320 20
—1867896202394880 '® +10522731466801386 16
—43079389762268160 y* +128901200546148408 y'2

—281029242225518208 0 + 440413731938457828 2
~—482195108654477696 3 + 349472852081130696 y*
—150411589033214976 y2

+29067276705016727) /2835
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C(10) = 32(675y36 — 214650 y°* + 24524775 y 2
— 1416164400y
+47753927100 % — 1030782763800 2
+15126283744860 y2* — 157157532680400 22
+1188621307767210y%° — 6667418727685020 y'8
+28058027730058290 y'¢
— 89039060380434000 4
+212835395264864940 12
—380072612372777880 y°
+498218768602080812 y 8
—464481620112148400 ¢
+291058626317465931 y*
—109747648387208250 y
+18794513408019807) /75.

Tedious algebra was involved in finding the first seven
coefficients in (29). Explicit formulas expressing the first
seven of the coefficients in (17), (25), and (27) in terms of
coefficients already known were derived. In fact, the coef-
ficients in (24), (26), and (28) were obtained by detailed
substitution in the simpler of these formulas. To find the
next four coefficients, these formulas were programmed on
a digital computer and the values of each unknown coeffi-
cient were found successively at different values of y on
the real axis. The polynomial factor of each of the un-
known coefficients was then reconstructed from these val-
ues.

A method which avoided the tedious algebra involved in
expressing explicitly the unknown coefficient in terms of
known coefficients was adopted to find the last four
coefficients in (29). It can be shown that (16) permits the
determination of the value of the coefficients of ¢’?' in
terms of the values of the coefficients of lower degree
occurring in the powers of p, up to the ninth, so long as
2i < 30. Since these values depend only on the values of
the coefficients of degree < 2i, it follows by induction that
the value of the coefficient of ¢’*' can be found directly
from (16) for any value of y if 2i < 30.

The convergence of the expansion for ¢’ has not been
demonstrated. It is possible, however, that it converges
over a wide range of values of the dimensions for both
geometries. In spite of the large values of the coefficients
in the highest degree terms, there is sufficient cancellation
in them so that when they are multiplied by (1— y) to the
proper power for y <1 and divided by (1+ y) to the
proper power for y>1, the final values are small, uni-
formly decreasing quantities for y <1 and small, generally
decreasing quantities of changing sign for y >1.

In any case, the values of k and a obtained from (29)
are extremely accurate. For x/y as small as 0.05, the
values of k£ and a obtained from (29) are accurate within
0.01% for values of y corresponding to values of ¢/b
ranging from 0.05 to 0.9. For values of x/y = 0.2, agree-
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ment to ten decimal places is found. As x /y increases, the
number of terms of (29) required for a given accuracy
decreases, as one might expect. For example, when x/y =
0.8, four terms of (29) give ten-place accuracy; when
x/y =16, only three terms are sufficient for nine-place
accuracy.

Equation (29) determines the value of ¢’ directly in
terms of the values of the dimensions x and. y of Fig. 2.
For the geometry of Fig. 2(a), y <1 and for the geometry
of Fig. 2(b), y>1. In ecither case, k is given by the
well-known expression

., A _a9 4 L.
k=t
When a is real, the geometry is that of a slab line. Then
x=x,=w/b
y=y,=1-1/b. (31)

For given dimensions, the modulus k, is first determined
from (31), (29), and (30). It is then possible to find a = «,
from (7) since K, and K are now known. The capacitance
C, of the structure is then given by the expression

C,=4K}/K,. (32)

Here, K, and K| are the complete elliptic integrals of the
first kind of modulus k, where

en(a,, k,)
°" dn(a, k,)° (33)

When a is complex, the geometry is that associated with
the approximate fringing capacitance C/. Then

x=x,=s/(b—1t)

y=y.=b/(b—1t). (34)
As above, k. and «a, are found from (34), (29), (30), and
.

Explicit formulas for the C/ have been given by
Cockcroft [2], Getsinger [3], and Riblet [12]. In the expan-
sion for C; given in [12, eq. (4)] a must be replaced by
K — a.. Moreover, after this substitution, the Z(a) can be
eliminated by introducing the value of x from (6). Finally

(35)

Gt = FZi—T) —2log(ksnacnad?(a))/=.

Here, 6,(a)=0(a)/0(0) and the subscript ¢ has been
omitted.

Table I compares the values of C, and C; obtained
from (32) and (35) using (29) with values obtamed from an
accurate computerized search. The values in the top row
are the accurate values, while the next row gives the values
obtained by using all 11 of the terms of (29). The third row
uses only seven of the terms of the series. The values in the
table show that the use of all 11 terms of the expansion
substantially increases the accuracy with which C, and C/
are approximated for small values of s/b and w /(b —1).
For values of s/b and w/(b—1t)> 0.2, the number of
terms required for ten-place agreement decreases rapidly,
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TABLEI
VALUES OF C/, AND C;
.
Cto CS/4
s/b w/(b-1)
/b 05 i0 20 05 10 20
2 68056623011 789173248 |1 191716807 5072294390 | 5792213317| 7002360012
05| 2 68104 178917345 1191716807 50723024 6792213317 7002360012
2708 | 78937 1181716853 507272 57922207 7002360015
3 6490459002 261324192 1| 422309070 5788907107 6465702057 76383856236
10| 3 649090 2261324203 (! 422309070 57889129 6465702061 | 7638956236

3682 2 26151 1 422309113 578926 6465708 | 7638956238

1131164070
1 131164070
113116437

t 240413846
1 240413846
1240413846

1131782862
50|11 317839
13197

6970222677
5970222680
59702275

3203973057
3203973057
3203973057

| 071929709
1 07192998
| 071948

2294119392
2294119332
2294119392

5143537249
5143537250
51435372860

2128467967
212846820
2128484

2 186305706
2 186305706
2 186305926

18 64353725
90 (18 643611
18 6475

9558728800
9558728828
9 558760

as has been observed. It is clear that, for most geometries
of practical interest, (29) will determine both the slab-line
capacitance C, and the approximate fringing capacitance
C; with great accuracy, enabling the previous com-
puterized search methods to be avoided.

IIL.

The determination of C; and C/ from the values of k
and a found by a computerized search requires routines
for calculating values of various elliptic functions. The
same is true of the values of C; and C/ obtained from the
k and a found from (29), (30) and (7) Thus, an error
somewhere in these routines could result in an error in the
first row for each t/b parameter given in Table I without
affecting the agreement between the accurate first-row
values and the approximate second- and third-row values.
In order to minimize this possibility, two routines for
evaluating the elliptic functions were employed. The values
of the elliptic functions used in evaluating C; and (¢ in
terms of the k and « found by a computerized search were
determined by means of the g series for the theta func-
tions, while Landen’s transformation was used to find the
approximate values of C; and C/.

EvALUATION OF THE E1LLIPTIC FUNCTIONS

ACKNOWLEDGMENT

The author is indebted to the reviewers for suggestions
which materially simplify and clarify the arguments and
the statement of the results of this paper. In particular, the
x and y notation which is used here in place of the w, s,
b, and ¢ notation of Fig. 1 has the consequence that the
two equations that were required to express the sense of
(7) can be written as one. Moroever, the absolute value
signs in (24) make it possible to express g’ by a single
expansion in y and x/y rather than as two series with
terms differing only in sign.

REFERENCES

{11 F. W. Carter, “The magnetic field of the dynamo-electric machine,”
J. Inst. Elec. Eng., vol. 64, pp. 1117-1118, 1926.

[2] J. D. Cockeroft, “The effect of curved boundaries on the distribu-
tion of electric stress round conductors,” J. Inst. Elec. Eng., vol.
66, pp. 404-406, Apr. 1928.

[3] H. Lundkvist, “The measurement of temperature by thermocou-
ples,” ASEA-Journal, vol. 6, pp. 90-93, 1929.



1130

{4]
(3]

(6]

(7]

(8]

(9]

(10]

f11]

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 11, NOVEMBER 1986

F. Bowman, Introduction to Elliptic Functions with Applications.
New York: Dover, 1961, pp. 80-84.

R. H. T. Bates, “The characteristic impedance of shielded-slab
line,” IRE Trans. Microwave Theory Tech.,vol. MTT-4, pp. 28-33,
Jan. 1956.

W. I. Getsinger, “Coupled rectangular bars between parallel plates,”

IRE Trans. Microwave Theory Tech., vol. MTT-10, pp. 65-72, Jan.
1962.

K. J. Binns and P. J. Lawrenson, Analysis and Computation of
Electric and Magnetic Field Problems. New York: Pergamon, 1973,
pp. 208-213.

H. J. Riblet, “Upper limits on the error of an improved approxima-
tion for the characteristic impedance of rectangular coaxial line,”
I1EEE Trans. Microwave Theory Tech., vol. MTT-28, pp. 666-667,
June 1980.

H. J. Riblet, “A calculation of the conformal mapping parameters
used in evaluating the approximate fringing capacitances,” IEEE
Trans. Microwave Theory Tech., vol. MTT-27, pp. 148-150, Feb.
1979.

H. J. Riblet, “An approximation for the characteristic impedance
of shielded-slab line,” IEEE Trans. Microwave Theory Tech., vol.
MTT-27, pp. 557-559, June 1979.

H. Hancock, The Theory of Elliptic Functions. New York: Dover,
1958.

[12] H. I. Riblet, “An expansion for the fringing capacitance,” TEEE
Trans. Microwave Theory Tech., vol. MTT-28, pp. 265-267, Mar.
1980.

(d

Henry J. Riblet (A’45-M’55-F’58) was born in
Calgary, Canada, on July 21, 1913. He received
the B.S. and Ph.D. degrees from Yale University,
New Haven, CT, in 1935 and 1939, respectively.
From 1939 to 1941, he taught mathematics at
Adelphi College, Garden City, NY, and at
Hofstra College, Hempstead, NY. He joined the
staff of the Massachusetts Institute of Tech-
. nology Radiation Laboratory, Cambridge, in
1942, and at the close of World War II was in
charge of one of the three development sections
of the Antenna Group. From 1946 to 1948, he headed the RF group at
the Submarine Signal Company, Boston, MA. At present he is affiliated
with the Microwave Development Laboratories, Inc., Needham Heights,
MA.
Dr. Riblet is a member of the American Mathematical Society. In
1976, he was awarded the 1975 Microwave Career Award by the Profes-
sional Group, Microwave Theory and Techniques.




